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AbIaract-A theory of porous elastic solids. either dry or saturated by a compressible ftuid, is presented
which is based upon Hamilton's extended variational principle. The theory uses a more extensive
kinematic:at description of the materials than is used in the Biot theory and includes the elects of the Ioc:a\
expansions and contractions of the porous structure (microinertial effects). Unlike BioI's formulation. the
constitutive relations for the porous solid and for the ftuid depend only upon kinematical variables
associated with the solid and with the ftuid. respectively. The relation of the present theory to the Biot
theory is discussed and it is shown that the theories are equivalent in the limit of large wavelengths. Wave
propqation results are presented based on data for Berea sandstone and it is shown that the microinertial
effects substantially alter the dispersion and attenuation behavior predicted by the Biot theory.

J. INTRODUCTION

The authors have recently presented a theory for mixtures of immiscible fluids which is based
upon Hamilton's extended variational principle[l]. The volume fractions of the constituents
play a major role in the theory. The fact that the sum of the volume fractions of the
constituents must equal one is introduced into the variational principle as a constraint and is
thereby incorporated directly into the equations of motion. Furthermore, the kinetic energies
associated with local changes in the volumes of the constituents (i.e. first-order microinertial
effects) were included in the theory in analogy to continuum models for composite materials [2].

In the present paper the theory is extended to the case of a porous elastic material, either
dry or saturated by a compressible 8uid. The theory differs from the work of Biot[~], and
from continuum theories of fluid-solid mixtures such as those presented in[9-13], in several
respects:

(i) The kinematical information used is more extensive. In Biot's theory, the deformational
states of the solid and of the fluid are expressed by the strain of the solid t(,)j/c and the dilatation
of the displacement vector of the fluid t(/) =14(/)11.. k. In the continuum theories of fluid-solid
mixtures cited above, the deformational states are expressed by the strain of the solid t(.)j/c and
the partial density of the fluid P(f) (the density of fluid per unit volume of the fluid-solid
mixture). In the present work, the deformational states are expressed by the strain of the solid
e(.)j/c, the volume fractions of the solid and of the fluid ~(S), ~(f), and the densities of the solid
and of the fluid Pc.l> p(f). (The terms Pl,) and p(f) are the actual material densities. They are
related to the partial densities by p(.) =~(.>P(.), p(f) = tP(f)Pl/)')

(ii) The kinematical description which is used permits the volume fraction constraint to be
introduced explicitly. .

(iii) The kinematical description which is used also permits the constitutive relations for the
porous solid and for the fluid to depend only upon kinematical variables associated with the
solid and with the ftuid, respectively.

(iv) The theory includes the kinetic energies of local expansion' and contraction of the solid
and of the fluid. A porous medium is intrinsically microstructural-the pores are the micro
structure-and can undergo local expansion of the pores which is independent of the gross
motion of the material. The present theory models this local motion by including in the
variational principle kinetic energies that are in terms of the squares of the rates of change of
the material densities PlS) and p(f)[l].
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Theories of porous materials which include the volume fractions of the constituents have
been presented by Garg(14], Garg et al.[l5], and by Kenyon(16]. In these works, constitutive
relations for the volume fractions are introduced. In the present theory, the volume fractions
are independent kinematical variables which are obtained explicitly from the solutions of the
equations. Furthermore, these works do not use a variational formulation and do not include
microinertial effects.

It is shown that in the limit of large wavelengths, the equations of the present theory are
equivalent to the Biot equations. However, by comparing solutions for the propagation of
steady state compressible waves in Berea sandstone, it is shown that microinertial effects
substantially change the dispersion and attenuation characteristics of the waves.

2. KINEMATICS

The notation and esselltia1 results required for the application of the variational methods of
mechanics to a mixture bave been presented previously[l] and will be summarized here.

The solid and fluid are treated as individual continua. Each continuum bas a motion (in
Cartesian tensor notation)

(1)

where Xi is the position vector of the material particle of the , constituent (f "" I for the solid
and , "" / for the fluid) whose position is ~f) in a specified reference confiauration. The velocity
VWI and acceleration a(f)i of the , constituent are

a
V(fll "" at X(f)/(~f), t),

a2

a(f)/ "" a? X(f)/(~f" t).

The rate of chanle of a variable f(e><x, t) foUowing the motion of the 'Y constituent is

where, i =(ataXj), and let

The Jacobian of the motion (1) is

- (~)J(f) - det aXt.'lk '

and the densities, partial densities, and volume fractions are related by

where the volume fractions satisfy

~ tIIr.,,(x, t) "" I.
I

The conservation of mass equation for each constituent is

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
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or alternatively

where a subscript 0 denotes that a variable is evaluated in the reference configuration.
When a variation 6x(f)j is added to the motion (I),

the resulting variations in the velocity VWj and Jacobian "'f) are

8V(f)j =8i(f)j,

MIf) = Jw6xlf)u·

969

(10)

(11)

(12)

(13)

The variation of a function rw holding the spatial point fixed can be written in terms of the
variation 6rw holding the material point XIf) fixed as

Hamilton's extended principle is written

f. '2 f.'26 (T - U) dt + 6w dt =0,
I. I.

(14)

(15)

for variations which vanish at the arbitrary times th t2. where T is the kinetic eDel'JY. U is the
potential energy, and 8w is the virtual work due to forces not represented by a potential.

3. FLUID SATURATED POROUS MEDIUM

Consider motions of a material volume v of the porous solid-ftuid mixture such that 6x(.)j

and the normal component of 6x(/)j vanish at the surface s of v.
The kinetic eDerJY of the mixture contained in v is written

The first two terms in (16) are the kinetic energy terms used by Biot[3). In his notation.
m=- P12' The third term is the kinetic energy of local expansion of the constitueDts [I). The
estimation of the coefficients l(f) by considering the local expansional kinetic energy of a
cylindrical pore is discussed in Appendix 1.

A specific strain energy E(.) is introduced for the porous solid which is assumed to be a
function of the strain

(17)

where U(.)k is the infinitesimal displacement vectort, and the density Pt..).

(18)

It is important to note that p(.) can vary independently of the strain in a porous solid; this is an
additional degree of freedom. For the fluid, the specific strain energy depends only on the

t Although the variational procedure is weD suited to deriving a nonlinear theory. the present paper is restricted to the
linear theory.
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density P(j),

so that

The virtual work is written
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(19)

(20)

(21)

where f(~>k is an external body force density (such as gravity), and P(f>k is the interaction (drag)
force on the t constituent.

Includinl eqns (8) anQ (10) as cODSt:raiI'1ts and usin. (16), (20) and (21), Hamilton's principle
(15) is, introllucilla J...aannp multiptiers A and 1l1f)t

f!{8[~L! Pmv(IltVlf)l d., +i! m(v(f)i - V(I>k)(V(f)1c - V(1 )1c)dv

+~ [ ~ Af~J2(f) dv - ~LAI.,E(f) do ]

+~ i (Pf.J(1lt +'(l)1c)8x{l)1c dv - LA8 ( ~tPt.f) - l)L dv

+~LJl-(f)8 (Jle> - +~%) de} dt =: O. (22)

Using (12H14) and intearatina by parts, (22) can be writtenf

f2 {~ f.. - /i{f)iI(~ei dv +i -m(fIq)k - iI(,t>k)(~ - 8x(,t)l) dv

+:f i -Pw1(()A()8Pff) dv - i [-(/i{I>:Z:)J6X(sl. +1'<,) ~1::: SAdJdv

- f Pm dd1Jw 8Pm dv +I f (Pln!(l)1c +P{f)l)&tflt dvJ. Ai> f.~

-i A~(+km-~fM)dv

+ ~ f. [-(P.(~(f»,k8x(f)1c +1J.(f,J(() (1:::+t)JdO} dt = O. (23)

Requiring (23) to be satisfied IlIlder Independent variatioos 8J:(f)h 8Af), &/I(f) gives the equatiOfts

(24)

(25)

(26)

(27)

tThe determinalion of tbe variation of tile relative velocity kinetic energy term is diSl;u$sed in Appendi" 2.
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Writing the density as the sum of the reference value and a small perturbation.
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(28)

(29)

(30)

the strain energies (18) and (19) can be written as isotropic second-order expansions in the
forms

(31)

(32)

where el.) = el.)/tk and c. d, I. g and h are constitutive constants. Note that c. d. I and g depend
only on the properties of the porous solid while h depends only on the fluid.

SUbstituting (31) and (32) into (24)-(27). assuming the interaction force to be of the form

(33)

where b is a constant. and using (28) and (29) to eliminate P.lt~(f). the linearized equations are

Pt.)O"I.lk ... m("(f)k - "(.lk) + celll.Ie +2dtl.)#Icj +fA.),/c +b(1iw - "(Ilk) - t/Ic.~.Ie' (34)

PtJ)oii(f)k= - m(ilmIc - al • lk ) - b("{flk - "I.lk) - q,~,/c. (35)

pt.)01{1.Jc.)= - ~,!O !el.) - ~.!O gA.) +A. (36)
",{.)O "'1.)0

p1noIcnoIcn= - t 1aPm+ A. (37)

where the extema1 body force density has been deleted.
Writing the volume fraction as

(38)

the linearized conservation of mass equations (10) and volume fraction constraint (8) are

(39)

(40)

(41)

Eliminating 4>1'). 4>(/) from (39) to (41) yields the equation

(42)

This completes the development of the linear-theory for the ftuid saturated porous medium.
Equations (34)-(37) and (42) provide a system of equations in the unknowns "I.lb "(f)b A,). P{f)
and A.

SS Vol. 15. No. J2-E
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4. POROUS MEDIUM

In the absence of the fluid, the Hamilton's principle (22) reduces to

which leads to the equations

(44)

(45)

Using the expansion (31), the linearized equations in the absense of the external body force are

A.-,0i4.)Ic =cec.),k +2dec.)/kJ +fA.),t,

-2 a A4 ~ =p(•.,J(.'II1P(.) = -.I.. fe(.) - A gA.).
",(.)0 .".)0

(46)

(47)

(48)

Equations (46) and (47) provide equations in the variables U(.)b A.). Equation (48) then
determines ~')' Note that the 1iaear momentum equation (46) and the C.lpusional equation (47)
are coupled. Also, it should be empIIasized that the coeflicients c, d, f. g in (46) and (47) will
have the same values for a particular porous material as the corresponding coefticients which
appear in (34H36).

S. RELATION TO THE BlOT THEORY

Let it be assumed that the expansional inertia coefticients [(flO =0 or that the waveleDlths
beinI considered are very larae compared to the pore structure so that the elects of the [(flO

are ncaJiIible. Then (36), (37) and (42) are aftebrai<: equations which can be solved for A.), An
and A in terms of the dilatational strains e(.) and e(/). The results are

where

D= h +q2rg•

CII =- Pc.)Oh - q2rf,

C21 =- Pc.JOQrg +qrf.

Cn = - pc.)Oqrg.

q=Pc.d~.

r =q,(f)O/q,c.)O·

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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Substituting (49H5l) into eqns (34) and (35) gives the two equations

973

PI.lOii(.)k =m(ii(f)/l - ii(.)Ie) + Ae•• ).k + 2Ne..)1/<.i + Qe(f),k + b("(f)le - "••)/1). (59)

P(flOiil/)k = - m(ii(/)/I - ii(llk) + Qel'l.k + Rel/),k - b("(f)k - "(.)Ie). (60)

where

A =c +b(fCII-¥- C21 ).

N=d.

Q= b(fC12-¥-C22).

R=-pyt C22• ,

(61)

(62)

(63)

(64)

Equations (59) and (60) are the Biot equations[4]. Thus, althouP the present theory contains
more degrees of freedom than are present in Biot's theory, the variational formulation verifies
that the Biot equations are valid in the limit of large wavelengths. This procedure also provides
an alternate derivation of Biot's equations.

Furthermore. this comparison provides a means for solving for the coefficients of the
present theory in terms of the Biot coefficients. From (32), it is easy to show that h is related to
the bulk modulus of the fluid Al/) by

(64)

Then (61H64) can be solved for the coeftic:ients c, d,.f and.J in terms of the Biot coefficients A,
N, Q andR:

R Q (R_rQ)2
C =A+?-2 , +?O'l/)~-R)'

d=N,

f= A<ftR-rQ)

TA.lO (rAl/) _ R- \'
q,(.~

g_ AwR
- -2 (" R_Y

rp(olO rAl/) - t/J(.~

(65)

(66)

(67)

(68)

Of course. from (59) and (60) it is clear that the coefficients m= - Pl2 and b in the present
theory are the same as the corresponding coefticients in the Biot equaDons. Thus, in obtainiDa
computational results from the present theory it is possible to use the available experimental
data on the Biot coefficients [l7-21].

A dividend of the present analysis is that, at hvelengtbs at which the effects of the I(~

can be neglected. (49) and (50) permit the material densities to be calculated from solutions of
Biot's equations, and the volume fractions can then be obtained from (39) and (40).

6. WAVE PROPAGATION RESULTS AND DISCUSSION

One dimensional steady state wave propagation results have been obtained by assuming
solutions of the form

(69)

where f(El is a constant, tIJ is the frequency, and k is the wave number. The one dimensional
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forms of eqns (34H37) and (42) for the fluid saturated porous solid become

-w2p(,'/Ou(,)= - w2m(u(f) - U(.) - k2(c +2d)u(.) - ikM(.) + iwb(u(f) - u(,» + ikcPlsJOA, (70)

-W2p~U(f) = w2m(u(f) - u(.» - iwb(u(f) - U(,l) + ikcP(j~, (71)

(72)

(73)

(74)

which are five homoseneous alsebraic equations in the constants lib)' U(flo P(J»~) and i. Setting
the determinant of the coefticients to zero gives the cbaracteristic equation which can be solved
for the phase velocity cJReal (k) and the attenuation -Imqinary (k) as functions of frequency.

For the porous medium in the absence of ftuid, the one-dimensional forms of (46) and (47)
become

(75)

(76)

The characteristic equation obtained from (75) and (76) can be solved in closed form to obtain

[

(C +2d) + ( ."lyf 2_ )']\1/2
wlk = Ps, J!lI" ,

tJ(J'/O
(77)

which is the phase velocity for compressional waves in the porous medium. Note that it is
dispersive and exhibits a resonance at w =("1'<,»1(,'/0)112. Also note that there is no attenuation.

It should be emphasized that the constants c, d, f and , retain the same numerical values
whether or not ftuid is present in the porous solid. Consequently for the same porous material
the same numerical values would be used for these constants both in eqns (70)-(74) and in eqn
(71).

The specific numerical results that are presented in this ~ork are for Berea sandstone
saturated with water. The properties of this material, including the Biot constants, are given by
Yew and JQIi{.20, 21}. The, daaa are listed ,in ..Afapeadix 3,akHag with computed values of the
expansional inertia coefficients 1(,'/0 and I~ (see Appendix 1) and the constitutive coefficients
c + 2d, f and g.

The phase velocity and attenuation results computed from eqns (70) to (74) for water saturated
Berea sandstone are shown in Pip. 1-6. The solid lines in these figures show the results for the
present theory including both the virtual mass effect (see Appendix 2) and the expansional
inertia efect. As in Biot's tbeory, two types of compressional waves exist in the material. They
are termed the fast and slow waves.

As noted previously, the results of the present theory reduce to those predicted by Biol's
theory when 1(.'/0 = I~ = O. These resuJts are shown in the figures. The effects of assuming that
m =0 are also shown.

In Figs. 1-3 the results shown by dashed lines correspond to the Diot theory with and
without the virtual mass effect. It is seen that the inclusion of this effect produces a pronounced
change in the results. When the expansional inertia terms are also considered, even more
pronounced changes are seen, particularly for frequencies above I MHz. Here the phase
velocity drops sharply and the attenuation increases rapidly as the frequency approaches a
resonant frequency of the unit cell.

Figures 4-6 iUustrate how the virtual mass effect inftuences the present theory. Here again it
is seen that large changes result from the inclusion of this term.
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Results were also obtained for dry Berea sandstone using eqn (77). Apin the
parameters used were those listed in Appendix 3. However, in this case virtually DO dispersion
occurs; the phase velocity of the single wave is essentially constant with a value of 3207 mls
except in an extremely narrow frequency band near the resonaDCe at 18.01 MHz.

When the latter value of phase velocity is compared to the low frequency value of the fast
wave phase velocity for the saturated material, 3299 mis, it is seen that the velocity drops by
3% when the water is removed. In Yew and Jogi[l9], measured wet and dry velocities of
3970 mls and 3818 mls are listed. While there is substantial error between the experimental
velocities and the computed velocities (which may be attributable to using Biot constants
determined by static measurements [20] for the calculations), the experimentally determined
shift in velocity between wet and dry conditions is 4%, which compares favorably with the
calculated shift.
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In assessing the results that have been presented. it must be remembered that the
coefficients 1(~ have been determined by modeling the porous structure as UDiformly dis
tributed cylinders of equal radius. In the real material. the pores will of course be randomly
distributed and of random shape and size. Nevertheless. the results presented iDdicate that in
the range of frequencies in which the fast wave in a fluid saturated porous medium exbibits
dispersion. microinertial elects can substantially modify the dispersion and atteIIuatioD of the
wave. This must be considered in experimental wave propagation studies.
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APPENDIX I

E.rtiIfIaliolt of ~fl

The coellkiellts I(f) ill the local expusion kilIetic enetJY term in eqJI (16, are estimated by cak:uIatiIIa the kinetic eoeray
associated with a hotnopneous expusion of a UIIit cen of the materiaJ. This correspoDds to tbe breathing mode of tbe unit
cell.

Let the material be modetad locaIJy as consistiq of parallel cylilldricaJ pore'! of radius 'tJ) UDiformly distributed in the
solid material. The unit cell will be asstIlIIId to coasist of a siqJe pore and a cylillder of solid materiaJ of radius ,(., which
encloses the pore (Pia. 7). The radius '(" caa be determifted in terms of the pore radius and the VollllllC fraction 1/ItJ):

(1.1)

When tbe unit cell expands hotnopneousIy in the radial direction, the radial vetoeit..of a material point in the fluid at

o
o

o

o

o
o

Fig. 7. The unit cell.
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radial position r is

and the kinetic energy of the ftuid in a portion of the pore of IeJlllh L is

The number of cylinders per unit volume of the mixture is

Multiplying (1.3) and (1.4), the kinetic enel1Y per unit volume is

For the homogeneous radial expansion,

so that (1.5) is

Comparing (1.7) with the local expansion term in (16), it is seen that

so tbat
,2

IC/"'-S;r.,.·
A similar allllysis for the cyliader of sotid IIlIteriaI Jives the result

L .. (ti,lO+ rlflO)
t,lO 8p1,JO"
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(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

(1,10)

Vari4tioll of tlat rrl4tivt lIfIodty kbutic ".""
The second term in eqn (16) is known as the virtual mass term. It was cIisc:uued by Biot14) and is known to be

important in particulate sedimentation and in the dynamics of bubbly liquids (22). Its IIItUre can be illustrated by a simple
example. .

Consider the porous soIid-t1uid mixture to be traDslatiDI without deformation and with DO relative velocity. The kinetic
enerlY of the fluid is

(2.1)

Next consider the t1uid in motion with the solid stationary. The kinetic eDeJ'IY associated with the velocity of the ftuid is,
from (16),

(2.2)

The enern (2.2) must be IarJer than (2.1) due to the sinuous motion of the fluid 1brouIb the pores. Thus m>0 and
represents the eDeJ1Y associated with the motion of the fluid lateral to the direction of its meaD motion wheD the relative
velocity between the tIuid and the porous solid is non-zero. For simple model pore geometries, it may be feasible to
calculate m by means of this example.

Now consider the variation of the virtual mass termt

(2.3)

t In a nonlinear theory, the coefficient m would be assumed to be a function of the state variables 41111. Pill' Since this
paper is concerned only with the linear theory, m is treated as a constant.
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Using (14) and (12),

A. BEDFORD and D. S. DRUMHELLER

M = f" f m(v(j)t - V("k)( 8Vmtl. - 8v("kl.> dv dt
" .

=f" I. m(V(j)k - vWk)cii(j)k dv dt - f" f m( V(/)k - v(,)k)cii(,lk dv dt
tl tI' rl v

-f"f m(v(/)k - V('lk)(II~(j)/-II(,>.tflx<')/)dll dt.
" .

(2.4)

(2.5)

Intep'atina the lint two iIItqra1s in (2.5) by parts and using (4),

81= - f" f. m[(limk - Ii('lkI""') +(v(/)t - v(,lk)vm/jI~llk dv dt
" .

+f" f. m[(limkl",., - Ii,,)k) +(1I(j)k - v(,)k)v"l/JJ~,)k dll dt
" .

- f" I. m(Vmk - V(,lk)(V(j)kA/)/ - v(J)kJ8x('I,} dll dt
" .

= -f"I. m[avlk - aft)t + (V(/)/.k - v(,)kJ)(v(j)/- v(,~)
" .

+v(j)IJ(V(jlk - v(J)k)I~)k dll dt

+f"I. m[a(jlk - a"lk +(v")/.I< - v(j)kJ)(vml- v,,),)
I, •

WIleD liDearized. (2.7) reduces to

(2.6)

(2.7)

(2.8)

wIIicb is tile expreuioa uaed ill (23). However. two CO"UIIIIIh must be IIIIde ill pusiaa.
Pint, 1IIimn·theories wfIil:Ia coaraiD a relative acccJeratioa term have been criticized 011 tile IfOUIIlIs that the relative

acceIeradon does aot salisfy tile priIcipIe of material frame indifereace[13]. However. it is easy to show tltat tile terms in
(2.7) are frame indiIereat. That sa combiaatioas are frame indiIenmt was lint sbon by AdkiIII [23]. In the Iiaear
appro~ diey reduce to !be relative acceIeraQoa. bMIeect. it bas been poiDted out by Bowea(l3. Sectioa 2,IJ that the
relative acceIeraIioa terms ill mWure theories should be r,prded as approxialatioas of property indiIereat forms.

FurdtenDore. it baa COfDll to die atteDtioa of die autIas that relalive ICCIieratioa ..... are beilIlI iIcIudid ia.1DixIure
theories that are ........ to problems ill wbich Iarae velocity Il'Idiats and velocities occur. III such cues the full
iwMlnlllt __ sIIouId be .... as the aeaIected terms are of the order of the convective acc:eIerations and could
subetaatially alter the solutions.

APPENDIX 3
MtltlrillJ COIUttlllU

The followiJll Biot coaswats for Berea sandstone as determined by static measurements are listed by Yew and
Il)Ii[20.21]:

P = 22.8790Pa,

Q ,. 1.0473 OPa.

R =0.33095 OPa,

jjyy,," 1.0052 Mg/mJ
•

A,'I)" 2.6286 MJ/m),
m ,. O.O!U Mg/mJ,

b ,. 0.28128 OPa - slmJ,

1/1(/'1) =0.1867.

Also the fluid bulk modulus and the pore radius are

A(j)" 2.20Pa,

r'll ,. 46.5 I'm.

From these values. usm, eqas (65)-(68) we compute

1(,'1) =2.4892 X 10- 16 m1/ki.

l(jlO = 2.6731 X 10-16 m1/ki•.

c + 2d,. 21.9820Pa,

f = 35.932 TPa.

g =0.53406 EPa.


