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Abstract—A theory of porous elastic solids, either dry or saturated by a compressible fluid, is presented
which is based upon Hamilton's extended variational principle. The theory uses a more extensive
kinematical description of the materials than is used in the Biot theory and includes the effects of the local
expansions and contractions of the porous structure (microinertial effects). Unlike Biot's formulation, the
constitutive relations for the porous solid and for the fluid depend only upon kinematical variables
associated with the solid and with the fluid, respectively. The relation of the present theory to the Biot
theory is discussed and it is shown that the theories are equivalent in the limit of large wavelengths. Wave
propagation results are presented based on data for Berea sandstone and it is shown that the microinertial
effects substantially alter the dispersion and attenuation behavior predicted by the Biot theory.

1. INTRODUCTION
The authors have recently presented a theory for mixtures of immiscible fluids which is based
upon Hamilton’s extended variational principle[1]. The volume fractions of the constituents
play a major role in the theory. The fact that the sum of the volume fractions of the
constituents must equal one is introduced into the variational principle as a constraint and is
thereby incorporated directly into the equations of motion. Furthermore, the kinetic energies
associated with local changes in the volumes of the constituents (i.e. first~order microinertial
effects) were included in the theory in analogy to continuum models for composite materials [2].

In the present paper the theory is extended to the case of a porous elastic material, either
dry or saturated by a compressible fluid. The theory differs from the work of Biot[3-8], and
from continuum theories of fluid-solid mixtures such as those presented in[9-13], in several
respects:

(i) The kinematical information used is more extensive. In Biot’s theory, the deformational
states of the solid and of the fluid are expressed by the strain of the solid e, and the dilatation
of the displacement vector of the fluid e, = Uy . In the continuum theories of fluid-solid
mixtures cited above, the deformational states are expressed by the strain of the solid ¢, and
the partial density of the fluid py, (the density of fluid per unit volume of the fluid-solid
mixture). In the present work, the deformational states are expressed by the strain of the solid
€:)i» the volume fractions of the solid and of the fluid ¢, &), and the densities of the solid
and of the fluid ), Ay). (The terms j,, and jy, are the actual material densities. They are
related to the partial densities by p(,) = d)fer Py = PP()-)

(i) The kinematical description which is used permits the volume fraction constraint to be
introduced explicitly. '

(iif) The kinematical description which is used also permits the constitutive relations for the
porous solid and for the fluid to depend only upon kinematical variables associated with the
solid and with the fluid, respectively.

(iv) The theory includes the kinetic energies of local expansion and contraction of the solid
and of the fluid. A porous medium is intrinsically microstructural—the pores are the micro-
structure—and can undergo local expansion of the pores which is independent of the gross
motion of the material. The present theory models this local motion by including in the
variational principle kinetic energies that are in terms of the squares of the rates of change of
the material densities g, and 5, [1].
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Theories of porous materials which include the volume fractions of the constituents have
been presented by Garg[14], Garg et al.[15], and by Kenyon[16]. In these works, constitutive
relations for the volume fractions are introduced. In the present theory, the volume fractions
are independent kinematical variables which are obtained explicitly from the solutions of the
equations. Furthermore, these works do not use a variational formulation and do not include
microinertial effects.

It is shown that in the limit of large wavelengths, the equations of the present theory are
equivalent to the Biot equations. However, by comparing solutions for the propagation of
steady state compressible waves in Berea sandstone, it is shown that microinertial effects
substantially change the dispersion and attenuation characteristics of the waves.

2. KINEMATICS
The notation and essential results required for the application of the variational methods of
mechanics to a mixture have been presented previously[1] and will be summarized here.

The solid and fluid are treated as individual continua. Each continuum has a motion (in
Cartesian tensor notation)

xi = XoiXep 1) )

where x; is the position vector of the material particle of the £ constituent (¢ = s for the solid
and ¢ = f for the fluid) whose position is X, in a specified reference configuration. The velocity
v and acceleration a; of the £ constituent are

']

Ve = 5 XoiXe 1), ?
az

Qe = 372 XwoiXea, 1) 3

The rate of change of a variable ['g(x, t) following the motion of the y constituent is
; )
Feolx,, = 2% Fo +Tio.i00mis @
where, i = (3/dx;), and let
| P = ¥ @lxq (%)

The Jacobian of the motion (1) is

d
](e) = det (bﬁ s (6)

and the densities, partial densities, and volume fractions are related by
P = dobe, )
where the volume fractions satisfy
26: dlx, )= 1. 8)
The conservation of mass equation for each constituent is

Ao+ PV« =0, ¢)]
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or alternatively

Jip =160 - SnPicn 10
O by dabe (10)

where a subscript 0 denotes that a variable is evaluated in the reference configuration.
When a variation 8x); is added to the motion (1),

X = x@iXig 1) + 85X, 1), a1n

the resulting variations in the velocity v, and Jacobian Ji, are
80 = 8o (12)
8o = Jioydx s 13)

The variation of a function I', holding the spatial point fixed can be written in terms of the
variation 8T, holding the material point X, fixed as

8T ol = 8T 5 — T'er.i8% ey (14)

Hamilton’s extended principle is written
] ]
6[ (T—U)dl+] dwdt =0, (15)
H 1

for variations which vanish at the arbitrary times ¢, t,, where T is the Kinetic energy, U is the
potential energy, and 8w is the virtual work due to forces not represented by a potential.

3. FLUID SATURATED POROUS MEDIUM
Consider motions of a material volume v of the porous solid-fluid mixture such that 8x,)
and the normal component of 8x, vanish at the surface s of v.
The kinetic energy of the mixture contained in v is written

1 1 -
T= ; f 3 Peewvn dv + I %m(v(m = Dok — vp) do + ; L 3 peliod o do.  (16)

The first two terms in (16) are the kinetic energy terms used by Biot[3]. In his notation,
m= — p;>. The third term is the kinetic energy of local expansion of the constituents[1]. The
estimation of the coefficients I, by considering the local expansional kinetic energy of a
cylindrical pore is discussed in Appendix 1.

A specific strain energy E,,, is introduced for the porous solid which is assumed to be a
function of the strain

1
€ai =3 (R + Uisyix)s an

where uy is the infinitesimal displacement vectort, and the density 5,

E(sy= E(sf(€sip Pis))- (18)

It is important to note that j;, can vary independently of the strain in a porous solid; this is an
additional degree of freedom. For the fluid, the specific strain energy depends only on the

tAlthough the variational procedure is well suited to deriving a nonlinear theory, the present paper is restricted to the
linear theory.
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density gy,

Eg = Eplp), (19)
so that
U=3 [ proEq do. 20)
& Jo
The virtual work is written
ow = ; L (eafon + Pow)% e do, (210

where f, is an external body force density (such as gravity), and py is the interaction (drag)
force on the ¢ constituent.

Including eqns (8) and (10) as constraints and using (16), (20) and (21), Hamilton’s principle
(15) is, introducing Lagrange muitipliers A and u(p,

f
1

j: {s {g I % PreyBioetion 40 + f -;- m(Dos = B XDk — ) 0

+3 [ Jrolortodo -3 [ aoEod ]

+ 3 [ ofion + piowixen do - [ 4 (5 o= 1)l

+3 [ e (@—%22?) do}dr——~o. @)
Using (12)-(14) and integrating by parts, (22) can be writtent

_[ :1 {2} f - PotewdXipn dv + f = M(agy ~ AN Exepn = 8xee) do

+ 3 [ - polodostiodo - [ [ - (o 22 sri + oo S22 510 o

- [ 0 52288000+ 3 [ (hiaion + piewrn o

-[ A3 @b~ dnstron do

+ 3 [ [-moi stsien + oo (20+20) g =o. 23)

Requiring (23) to be satisfied under independent variations 8xos, 8, 8 gives the equations

d
Pisiisye = m(dipx ~ o) + ( "&”‘) +Pfen t P + Abx — (Bl )ie  (24)

Pm 38(“” ;
P8k = — m{(duw = &) + pinfion + Pk + Adink — (i) x (25)

. JE,
s TR e -_Jﬂ 2

P(s)lfs)ﬂm P s, + G s (26)
- F

! D™= ~ .%0 + - "y
Polnbin= = Py 53 " @7

tThe determination of the variation of the relative velocity kinetic energy term is discussed in Appendix 2.
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g ®

Writing the density as the sum of the reference value and a small perturbation,

Po = Pen+ Py (30)

the strain energies (18) and (19) can be written as isotropic second-order expansions in the
forms

! - 1 - -
P Es = 3 Cesren t deyueyi + fenpis + 2 8PPisn (31
1,- -

PnEg =35 hoppy), (32)
where e;)= e and ¢, d, f, g and h are constitutive constants. Note that ¢, d, f and g depend
only on the properties of the porous solid while h depends only on the fluid.

Substituting (31) and (32) into (24)(27), assuming the interaction force to be of the form
Pisw =~ Py = blipw — ), (33)

where b is a constant, and using (28) and (29) to eliminate pJ s, the linearized equations are

Pwlion = M{igw = low) + Ceiorx + 2demi + fhiora + bllin = ligw) = epd ey (34)

Pl = ~ mligg = lisu) — by — i) = dioA s (35)
Blondiewhis= = %"ﬁﬂm’ Meﬁm +A, (36)
()0 (£)0
-2 ¥ [ 20
Pl b Suw hpg+ A, (37

where the external body force density has been deleted.
Writing the volume fraction as

b0 = b+ b (38)

the linearized conservation of mass equations (10) and volume fraction constraint (8) are

L, % ﬂu
b = ¢(s)0 *a p(s)O (39)
e %0 !_’m 40
én= L) 5 Py’ “o)
b+ b =0. (41)

Eliminating &), d¢, from (39) to (41) yields the equation
- - =Qapz bz 42
¢(:)0e(:) ¢U)Oe(n ﬁ(‘)o Ps) ﬁ(!n Py ( )

This completes the development of the linear theory for the fluid satursted porous medmm
Equations (34)~(37) and (42) provide a system of equations in the unknowns uu, ¥ Py P
and A.

SS Vol. 15, No. 12--E
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4. POROUS MEDIUM
In the absence of the fluid, the Hamilton’s principle (22) reduces to

]
1

1 .
f' {5 [ ] 3 Pyt dv + f %Pmluﬁfs)dv - f p(,,E(,,dv] + J: Pisif (s % o)k d”} dt=0, (43

which leads to the equations

8& )
PisyBs = (Pm . ) + P (44
ae(:)ki o
6§ )
Podober= = pio 5= (45)
P(s)

Using the expaasion (31), the linearized equations in the absense of the external body force are

Puwlon = Ceqsyk + 2depi + foorb (46)
& Oy Oy =
[} (2: wlisxopis) = = fun f €(s) Lue 8Py 47)
Pisx )

and:the linearized conservation of mass equation is

e =B, P
‘o ¢(a)0+ﬁ(l)0. (48)

Equations (46) and (47) provide equations in the variables Uiy .. Equation (48) then
determines ¢y,). Note that the linear momentum equation (46) and the expansional equation (47)
are coupled. Also, it should be emphasized that the coefficients ¢, d, f, g in (46) and (47) will
have the same values for a particular porous material as the corresponding coeflicients which
appear in (34)-(36).

5. RELATION TO THE BIOT THEORY
Let it be assumed that the expansional inertia coefficients I =0 or that the wavelengths
being considered are very large compared to the pore structure so that the effects of the [,
are negligible. Then (36), (37) and (42) are algebraic equations which can be solved for 4, 5
and A in terms of the dilatational strains ¢, and e,. The results are

b= (Cuewn+ Cutp), @)
Py = %(Cznem + Cney), 50
A= % (Caresy + Crepy), 51
where
D=h+q’rg, (52)
Cu= = pwh - ¢'r'f, (53)
Ci2= — pisyorh, 54
Car= ~ pisqre + arf, (55)
Cn=— ps0qr's, (56)
4 = piowl Bpor 57

r = duwl bisp. (58)
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Substituting (49)~(51) into eqns (34) and (35) gives the two equations

Puwlisi = Mgy — b)) + A i + 2Neyu ; + Qe s + bligy ~ Sip), (59)
Puwlipy = = miigu — Gsp) + Qe + Regx — bl — ), (60)
where
1 -
A=c+p(fon-Bkcy), )
N =d, (62)
1 R
Q=B(fclz‘&'[rmﬁczz), (63)
R=-80h ¢, (64)

Equations (59) and (60) are the Biot equations{4). Thus, although the present theory contains
more degrees of freedom than are present in Biot’s theory, the variational formulation verifies
that the Biot equations are valid in the limit of large wavelengths. This procedure aiso provides
an alternate derivation of Biot’s equations.

Furthermore, this comparison provides a means for solving for the coefficients of the
present theory in terms of the Biot coefficients. From (32), it is easy to show that h is related to
the bulk modulus of the fluid Ay, by

h = oAl iy, (64)
Then (61)-(64) can be solved for the coefficients c, d, f and g in terms of the Biot coefficients A,

N, Q and R:
_ LR (R - rQ)?

d=N, (66)
f=—2aR=rQ )

TPsw (’A(!) - ;(-:)—0)
AR (68)

g= R\
rﬁ(zl)o (rA(ﬂ-m)

Of course, from (59) and (60) it is clear that the coeflicients m=—p,; and b in the present
theory are the same as the corresponding coefficients in the Biot equations. Thus, in obtaining
computational results from the present theory it is possible to use the available experimental
data on the Biot coefficients{17-21].

A dividend of the present analysis is that, at wavelengths at which the effects of the Iy
can be neglected, (49) and (50) permit the material densities to be calculated from solutions of
Biot’s equations, and the volume fractions can then be obtained from (39) and (40).

6. WAVE PROPAGATION RESULTS AND DISCUSSION

One dimensional steady state wave propagation results have been obtained by assuming
solutions of the form

T = e, (69)

where f‘m is a constant, w is the frequency, and k is the wave number. The one dimensional
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forms of eqns (34)~(37) and (42) for the fluid saturated porous solid become

~ w2 pieplly= — WMl — sy = k(¢ + 2d)dy — ikf s+ bl ~ o) + ikdsh,  (70)

~wpliepy = 0 Mligy = lige) — iwb iy — thiyy) + ik, ()
_wzﬁ(zsl)l(:)op:(:) = ik ﬂ'ﬁgfuﬂ(x) ~Bue gp:(s) + X, (72)

disn disw
~ 0 5lpelpabin= —f,fmhﬁmL (713)
M(J)O“(s) + lkd’(m“m %‘E y+ %ﬁ ﬁ(!» (74)

which are five homogeneous algebraic equations in the constants i), d¢) fis» A and A. Setting
the determinant of the coefficients to zero gives the characteristic equation which can be solved
for the phase velocity w/Real (k) and the attenuation —Imaginary (k) as functions of frequency.

For the porous medium in the absence of fluid, the one-dimensional forms of (46) and (47)
become

= wzp(.\‘)od(:)= - kz(c + 2d)'i(.t) - ikfﬁ‘(s)y 75
- 0*5lookndi = ik %ﬁ fibs— %:3 8his)- (76)

The characteristic equation obtained from (75) and (76) can be solved in closed form to obtain

f 12
(c+2d)+(7u_—r‘nkzu2i )

wlk=

Psyo

which is the phase velocity for compressional waves in the porous medium. Note that it is
dispersive and exhibits a resonance at w = (g/pueli0)". Also note that there is no attenuation.

It should be emphasized that the constants ¢, d, f and g retain the same numerical vajues
whether or not fluid is present in the porous solid. Consequently for the same porous material
the same numerical values would be used for these constants both in eqns (70)-{74) and in egn
(.

The specific numerical results that are presented in this work are for Berea sandstone
saturated with water. The properties of this material, including the Biot constants, are given by
Yew and Jogi[20,21]. The data are listed in -Appendix 3 along with computed values of the
expansional inertia coefficients I ,,, and I (see Appendix 1) and the constitutive coefficients
c+2d, f and g.

The phase velocity and attenuation results computed from eqns (70) to (74) for water saturated
Berea sandstone are shown in Figs. 1-6. The solid lines in these figures show the resuits for the
present theory including both the virtual mass effect (see Appendix 2) and the expansional
inertia effect. As in Biot's theory, two types of compressional waves exist in the material. They
are termed the fast and siow waves.

As noted previously, the results of the present theory reduce to those predicted by Biot’s
theory when 5 = L5 = 0. These resuits are shown in the figures. The effects of assuming that
m =0 are also shown.

In Figs. 1-3 the results shown by dashed lines correspond to the Biot theory with and
without the virtual mass effect. It is seen that the inclusion of this effect produces a pronounced
change in the results. When the expansional inertia terms are also considered, even more
pronounced changes are seen, particularly for frequencies above 1 MHz. Here the phase
velocity drops sharply and the attenuation increases rapidly as the frequency approaches a
resonant frequency of the unit cell.

Figures 4-6 illustrate how the virtual mass effect influences the present theory. Here again it
is seen that large changes result from the inclusion of this term.
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Results were also obtained for dry Berea sandstone using eqn (77). Again the
parameters used were those listed in Appendix 3. However, in this case virtually no dispersion
occurs; the phase velocity of the single wave is essentially constant with a value of 3207 m/s
except in an extremely narrow frequency band near the resonance at 18.01 MHz.

When the latter value of phase velocity is compared to the iow frequency value of the fast
wave phase velocity for the saturated material, 3299 m/s, it is seen that the velocity drops by
3% when the water is removed. In Yew and Jogi[19], measured wet and dry velocities of
3970 m/s and 3818 m/s are listed. While there is substantial error between the experimental
velocities and the computed velocities (which may be attributable to using Biot constants
determined by static measurements[20] for the calculations), the experimentally determined
shift in velocity between wet and dry conditions is 4%, which compares favorably with the

calculated shift.
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In assessing the results that have been presented, it must be remembered that the
coefficients o have been determined by modeling the porous structure as uniformly dis-
tributed cylinders of equal radius. In the real material, the pores will of course be randomly
distributed and of random shape and size. Nevertheless, the results presented indicate that in
the range of frequencies in which the fast wave in a fluid saturated porous medium exhibits
dispersion, microinertial effects can substantially modify the dispersion and attenuation of the
wave. This must be considered in experimental wave propagation studies.
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APPENDIX |
Estimation Of Lg)

The coefficients [, in the local expaasion kinetic energy term in eqn (16) are estimated by calculating the kinetic energy

associated with a homogeneous expansion of a unit cell of the material. This corresponds to the breathing mode of the unit
cell.

Let the material be modeled locally as consisting of parallel cylindrical pores of radius r,, uniformly distributed in the

solid material. The unit cell will be assumed to consist of a single pore and a cylinder of solid material of radius r,,, which
encloses the pore (Fig. 7). The radius r,,, can be determined in terms of the pore radius and the volume fraction &,

(rgpdra) = by (.h

When the unit cell expands homogeneously in the radial direction, the radial velocityp# of a material point in the fluid at

O O

~N
/
Q | ) Q

Fig. 7. The unit cell.
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radial position r is
N
F=—=Fq, 1.2
' (1.2)

and the kinetic energy of the fiuid in a portion of the pore of length L is
"y a1 . 2.
\ 3 Pu2er drLP = 2 oLty (1.3)
The number of cylinders per unit volume of the mixture is
é
}'r?,l,)I' (1.4)

Multiplying (1.3) and (1.4), the kinetic energy per unit volume is

1, . .
3 $bot. (15)
For the homogeneous radial expansion,
. Ny =
r(!)=_fp-"3')p(hv (1'6)
so that (1.5) is
1 rz 29
16 Pm;gﬂw- (1.7

Comparing (1.7) with the local expansion term in (16), it is seen that

2

Ip= 55'%5(:—) 18

so that
2
Igpo= 242 (1.9)
" 85in

A similar analysis for the cylinder of solid material gives the result

L,ngm;fmﬂ_)h (1.10)

sﬁ(lﬂ

APPENDIX 2
Variation of the relative velocity kinetic energy
The second term in eqn (16) is known as the virtual mass term. It was discussed by Biot{4] and is known to be
important in particulate sedimentation and in the dynamics of bubbly liquids {22). Its nature can be illustrated by a simple
example. i .
Consider the porous solid-fluid mixture to be translating without deformation and with no relative velocity. The kinetic
energy of the fluid is

j., % PyDuuvyn dv. Q@n

Next consider the fluid in motion with the solid stationary. The kinetic energy associsted with the velocity of the fluid is,
from (16),

I, %(pw“‘ m)vguvgy do. 2.2)

The energy (2.2) must be larger than (2.1) due to the sinuous motion of the fluid through the pores. Thus m >0 and
represents the energy associated with the motion of the fiuid lateral to the direction of its mean motion when the relative
velocity between the fiuid and the porous solid is non-zero. For simple model pore geometries, it may be feasible to
calculate m by means of this example.

Now consider the variation of the virtual mass termt

C
I= I ’f %m(uw. - D X0y = vex) do dt. (2.3
h 1

+In a nonlinear theory, the coefficient m would be assumed to be a function of the state variables ¢, fip). Since this
paper is concerned only with the linear theory, m is treated as a constant.
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Using (14) and (12),
oI = j”j’ Mgy~ Ve N8Vl — 80(sel) do dt 2.4
,.'2 . :
-[ s = vt dodr - | | [ M= vt o a
- J:."f., m(vig = ”‘M)("Mw = Vs sSXy) do dt. 29
Integrating the first two integrals in (2.5) by parts and using (4),
or= _‘[:’L MG = Sisrelx) + (Ve = Vs )0upy18% e do dt
+f:}: MI(Grelxen = Biew) + 9k = Bierk ) 0rsyg 8% do dt
- I:L m(oyy = Do OBy = Vo iblisy) do dt 26)

n
= ‘f f mlayy — agn + (Ogyik = Viosey Xy ~ Visy)
1] v
+ 0(;),_‘(0(])( - v(,,.)]&xw, dv dt
2
+ f I mlage = B + (Vspk = Vg N0y = i)
1 Jo

+ D(,)”(DU)‘ - 0(,)3)]&(,)‘ dv dt. (2.7)
When linearized, (2.7) reduces to

ol = f ' [ = Ml8ge = e X8yt - Be) do d, 28)

which is the expressioa used in (23). However, two comments must be made in passing.

First, mixture theories which coatain a relative acceleration term have been criticized on the grounds that the relative
acceleration does not satisfy the principle of material frame indifference{13}. However, it is easy to show that the terms in
(2.7) are frame indifferent. That such combinations are frame indifferent was first shown by Adkins{23]. In the linear
approximation, they reduce to the relative acceleration. Indeed, it has been pointed out by Bowen(13, Section 2.1] that the
relative acceleration terms in mixture theories should be regarded as approximations of properly indifferent forms.

Furthermore, it bas come to the atteation of the authors that relative acceleration terms are being incladéd in mixture
theories that are applied to problems in which large velocity gradients and velocities occur. In such cases the full
indifferent terms should be used, as the neglected terms are of the order of the convective accelerations and could
substantially alter the solutions.

APPENDIX 3
Material constants
?‘he following Biot constants for Berea sandstone as determined by static measurements are listed by Yew and
Tog20,211 P =22879GPa,
Q = 1.0473GPa,
R =0.33095 GPa,
Ao = 1.0052 Mg/m’,
Prayp = 2.6286 Mg/m®,
m = 0.094 Mg/m’,
b =0.28128 GPa ~ s/m’,
b= 0.1867.

Also the fluid bulk modulus and the pore radius are
Ag =2.2GPa,
= 46.5 um.
From these values, using eqns (65)(68) we compute
L0 = 2.4892 X 107" m¥/kg?,
Iyw = 2.6731 x 107" m¥/kg?, .
¢ +2d =21.982GPa,

f=135932TPa,
¢ =0.53406 EPa.



